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Identifying Differential Equations 
by Galerkin's Method 

By Jack W. Mosevich* 

Abstract. A numerical technique based on Galerkin's method is presented for computing 

unknown parameters or functions occurring in a differential equation whose solution is 

known. Under certain conditions a solution can be shown to exist to the integral equa- 

tion formulation of this problem. It is also shown that the resulting nonlinear system is 

nonsingular. 

1. Introduction. In most mathematical modeling problems differential equations 

of specific forms are derived which describe a system. Values of the coefficients, which 

can be constants or functions, of the differential equations are usually specified, and the 

solutions are calculated or presented in closed form, with little, if any, indication of how 

the coefficients can be estimated from observations. Clearly, this inverse problem is very 

interesting and important but somewhat difficult. The purpose of this paper is to describe 

a numerical technique for calculating unknown functions in a differential equation (or 

system) supposing its solution to be known. That is, we assume a function y is given 

whose derivative j is continuous on [0, T] and such that y satisfies the differential equa- 

tion 

Wt = f(t, y(t), Cl (t), . . .*, Cm (0)) AO) = Y0 

on [0, T]. Our goal is to compute the unknown functions (or constants), cl, . . . , cm. 

We may sometimes only be given {jiyd} 1 where yi = y(ti), 0 = to < t1 < . . . < tn = To 
such as in a case where {yj} is a set of observed data. Thus we do not assume ) is known 

accurately. Also, the case of a system of differential equations should be admissible too. 

We stress that f must have a prescribed form to ensure a well-defined problem. 

2. Some Preliminary Examples. To illustrate our method we consider the simple 

growth problem of a population in an unlimited environment. At time t > 0 the differ- 

ential equation governing the number of entities present is 

Y~ W = CY W),I YAO) = Yo, t E [0, T] , 

where c is constant and unknown, but we assume that y(t) is known on [0, T] . 
The exact solution to the differential equation is, of course, y(t) = y0ect which 

can certainly be solved for c; but this is rarely possible in general and the expression 

for c, c = (lny - lnyo)/t, requires a specific value for t which ignores many other 

Received March 2, 1976. 
AMS (MOS) subject classifications (1970). Primary 65D 15. 
Key words and phrases. Galerkin's method, differential equation. 
*This work was supported by the National Research Council of Canada under Grant A8864. 

Copyright ") 1977, American Mathematical Society 

139 



140 JACK W. MOSEVICH 

known points. Another possibility is to solve the differential equation for c = j/y 

which is very poor since numerical differentiation is required, and we must again choose 
a specific t. A third possibility is to express the solution in integral form 

y(t) = YO+ C y(x)dx 

and solve for c, again requiring a value of t for which y(t) may be inaccurate. If, how- 
ever, we integrate once more we obtain 

fo (y(t) -yO)dt = c f f y(x)dxdt 

whereupon 

c = fo (y(t) -yo)dt f l4y (x) dx dt. 

This is the basis of our method, which utilizes all values of y on [0, TI, requires no 
specific value of t and smooths the data in the process. On substituting y = y0ect 
into the right-hand side, we find that this formula does give the correct result. Note 
that the double integral can be simplified to fTj(T - x)y(x)dx by reversing the order 
of integration. 

A more complicated example is the case of two competing species where the 
Volterra-Lotka equations are usually used to describe the populations: 

x = Ax - Bxy, x(0)=X0, 

( = -Cy + Dxy, y(O) = yo. 

The positive constants A, B, C and D are the birth, death and mixing rates of the 
species. In [1] and [3] methods are described for computing these unknowns in case 
they are constants (in [1]) or functions (in [3]). These techniques are iterative 
methods, quite different from the one described here, which give best 12 norm fits. 
Their methods do appear to work quite well but can be rather complicated to pro- 
gram. The presently described method is not iterative and appears to work well in 
addition to being relatively simple to code. 

To solve for the constants A, B, C and D in (1) we write the solutions in integral 
form 

x(t) = xo + Af x(s)ds -Bftx(s)y(s)ds, 

Y(t) y=0 -Cfx(s)ds +Df x(s)y(s)ds. 

We shall now obtain four linear equations in the four unknowns by integrating (2) 
and repeating this after multiplying (2) through by a function ' which is a member of 
a basis for C[0, T]: The results are 

(3a) (x(t) - xo) dt = A lo 
t 
x(s) ds dt - Bf Tf0x(s)y(s) ds dt, 

(3b) o (y(t) - yo) dt = -C 
T t 

y(s)dsdt + Dr Tr4x (s)y (s) ds dt, 



IDENTIFYING DIFFERENTIAL EQUATIONS 141 

(3c) J k(t)x(t) - x0)dt = A Jo k(t)ftx(s)dsdt -BfT 0(t)ftx(s)y(s) ds dt, 

(3d) f0 (t)(y(t) - yo)dt = - C0 0(t) fy(s) dsdt + D 0 ?(t) x (s) y (s) ds dt. 

The double integrals can be integrated once, for example 

l0 q(t)fx (s) dsdt = f X(s) [@(T) - (?(s)] ds, 

where (D = f. Note that (3) is really two sets (3a) and (3c), (3b) and (3d), of two 
equations in two unknowns. 

The method just described gave excellent results with ?(t) = t for the example 
considered in [1]: 

x=x-xy, x(0)= 1.2, 
(4) 

j = -y + xy, y(O) = 1.1 so A = B = C = D = 1. 

Solving (4) numerically by a Runge-Kutta routine and computing the integrals by 
quadrature with T = 1 resulted in 

fO (t) -X0)dt = .0910006, fot(x(t) -xo)dt = -.0626198, 

fT(y(t) -yo)dt = .0823068, fot(y(t) -y0)dt = .0519937, 

f ftx(s)dsdt = .5716192, f0TtfOx(s)dsdt = .3783768, 

f fty(s)dsdt = .5803130, f ytfoY(s)dsdt = .3890028, 

fo fOx(s)y(s) ds dt = .6626198, i | tx(s)y(s) ds dt = .4409966; 

with these values we find that the rearranged linear equations (3) are 

A(.5716192) - B(.6626198) = - .0910006, 

A(.3783768) - B(.4409966) = -.0626198, 

-C(.5803130) + D(.6626198) = .0823068, 

-C(.3890028) + D(.4409966) = .0519937, 

whose solutions are A = B = C = D = 1. 

The integrations were performed to seven-place accuracy, and we see that A, B, 
C and D can be calculated to at least six places. 

3. The General Method. In the above example we computed the moments of 
the solutions of the differential equations with respect to the functions 01(t) = 1 and 

02(t) = t. Our general scheme for the case of not-necessarily constant unknowns is 
a natural extension of this concept known as Galerkin's method of undetermined co- 
efficients for solving boundary value problems (see [2] or [6]). This method is 
based on the fact that in a Hilbert space H an element is zero if and only if it is 
orthogonal to every element of a basis of H, or in other words all its moments are 
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zero. In our case H = L2 [0, T] and (f, g) = OT ff(x)g(x) dx. 

We begin with the case of one unknown function c occurring on the right-hand 

side of a differential equation 

(5) ' = f(t, y(t), c(t)), y(O) = yo for t E [0, T]. 

If f is linear in c, f(t,y, c) = c(t)g(t,y) + h(t,y), then c is a coefficient in the usual 

sense; but for nonlinear f this is not the case. 

Let {pi} oe a basis for H, and suppose there exists an L2 integrable c satisfying 

(5), so we have c = I' 1aioi(t). Our goal is to approximate c by the partial sum 

C n(t) = cia Oi(t), and we hope that en c as n oo. In general, ai depends on 

n; but we elect to keep the notation simple by not using superscripts. 

To solve for ai, i=1, . . ., n, we express the solution to (5) in integral form 

Y(t)S = lo f (s, y (S), cn (S)) ds, 

multiply through by q)k(t) in which case 

rt 
kk(t)(Y(t) Yo) = Ok(t)o f(s,Y(s), cn(s))ds 

and integrate to get the system of n nonlinear equations in the n unknowns ai: 

(6) ofk(t)(Y(t) -y0)dt t) y y(s), aifki(s) dsdt, 

k= 1,2,...,n. 
If f is linear in c, f (t, y, c) = cg(t, y) + h(t, y), this becomes the linear system 

Ax = b with x = (ci, . i . ,a)T, b = (bl,*** bn )T 

and A = (akj), where 

bk = f0T) Mfts oh (s, y (s)) ds - d o dt 

ak ofkt| g (S, y (s)) 0j (s) d s d t. 

Note that the double integrals can be integrated once to yield 

CT 
akj J0 Jo (s)g(s y (s))Q(Ik(T) - k(s)) ds, 

where (Fk = f)k, with a similar expression for bk. 

It is evident from the Volterra-Lotka example that the problem of several un- 

known constants and several differential equations is very similar to (6), but with the 

sum Itokif(s) on the right side replaced by the vector (a1, al2, . .. , aCOl) In the case 

of several unknown functions c1(t), . .. , Cm(t) and one differential equation 

y (t) = f (t, y, c1 (t), . . , Cm (t)) 

we express each ci as a sum 
n 

C. = E a.kik(t) 
k=1 
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using only 01, . . .O, n as coordinate functions. In order to obtain enough nonlinear 
equations in the aki we must require orthogonality to mn of the ki. For example, 

n 

j =f(t,y,cl,c2,c3) with E Z k A(t) 
k=1 

will require 3n equations 

ofk(t)(y(t) - yo)dt = O fk( y, fvE ail j, E a12O1, Ea301) dsdt, 

k= 1,2,...,3n. 
For systems of differential equations with several unknown functions ci the de- 

tails are more complicated and will not be exhibited here. 

4. Existence Proofs. There are two basic existence problems which we must 
examine: the existence of a solution c to (5) and a solution x = (a, . . . , an )T to (6). 

Writing (5) in integral form yields an implicit nonlinear integral equation in c 
similar to a Volterra equation of the first type: 

(7) y(t)=yo + ?ff(s,y(s), c(s)) ds. 

This can be expressed as the operator equation 

Ac = y where Ac =Jo f(s, y(s), c(s)) ds, 

and y has been transformed so as to satisfy the initial condition y(O) = 0. Since we 
assume that f is continuous, A is an operator on L2 [0, T] into L2 [0, T]. The only 
topological existence proof which we could arrange is the following: 

THEOREM 1. If f (t, y, c) is such that the operator Pc = X (Ac - y) + c(t) is 
completely continuous (for X any nonzero real number), then (7) has at least one 
solution in L2 [0, T]. 

Proof. We first observe that P is defined on all of L2 [0, T] and hence on any 
sphere S C L2 [0, T]. Also, with (f, g) = fj fg dt, we have 

(Pc, c) = (X(Ac -y), c) + (c, c) = X (Ac -y, c) + (c, c) 

so that choosing X positive if (Ac - y, c) > 0 or X negative if (Ac - y, c) < 0 gives 
(Pc, c) < (c, c). By Theorem 1-27, p. 53 of [5], there exists a fixed point c*(P). 
Hence c* = Pc* = X(Ac* - y) + c*(t) so that Ac* -y = U as required. 

Since ' is assumed to exist, we therefore have a c* which satisfies (5) under the 
above assumption onf. Note that if f is of the linear form f(t, y, c) = h(t, y)c + 
g(t, y) and if h(t, y) ? 0 for all t E [0, T], then (5) can be solved for 

c = ( j(t) - g(t, y))/h(t, y). 

Another existence proof based directly on (5) is 
THEOREM 2. Suppose that j'(t) is continuous on [0, T] , y(0) = 0 and that f is 

continuous on [0, T] x Rangey x [A, B] . Suppose further that there exists a 
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co E [A, B] such that f(O. O co) = jO, f3(O, 0, co) # 0. Then there exists a contin- 
uous c = c(t) in some neighborhood of co such that j = f(t, y(t), c(t)). 

Proof. Let F(t, c) = f(t, y(t), c) - jP(t). Then by hypothesis F(O, co) = 0 and 

F2(0, CO) = f(, 0, CO) # 0. By the Implicit Function Theorem there exists a neigh- 
borhood of co and a continuous function c = c(t) such that F(t, c) = 0, on this neigh- 
borhood of co. 

The other question, whether or not (6) has a unique solution (a, . . ., a?n) if (5) 
does, can be partially answered for both linear and nonlinear f by the following: 

THEOREM 3. If there exists a unique solution c of (5) then for a suitable initial 
guess a = (?, . . . , an) and subset {fi}i 1 of the basis {i}, the Jacobian matrix 
J(A) of (6) is nonsingular. 

Proof. Let a be chosen so that f3(s, y(s), 2;=l a1 ds) is not identically zero 
(for sufficiently large n). Such an at must exist by the assumption that (5) has a 
solution c(t) = - 1a?qi (t), for if f3 0 then f is independent of c. Let J(ct) be the 
Jacobian matrix of (6): 

3(Gl , G2,**, GO) 

a(, a2, ...., an ) 

where Gk(a) = 0 represents (6) with 

Gk~a lo W f)| sY (s), Eai~i(s)) ds dt-l Ok W (Y - yO) dt 

and 

aO-t =kl O f k(t)l i(s)3 yE aidsdt. 

If the columns of J(ct) are dependent, then there exist A1, A2'**.. Ant not all zero, 
such that 

Al o01 3 +* = 0, k =1 to n. 

Thus 

4kfO (I Aiki(s))f3ds) = 0, k = ito n. 

If this system holds for all n, we have 

fo4( 5?Aii) f3 ds = 0 

(where we can define Ai = 0 for i > the original n) which gives 

/ n0 
( El Af) 3 = ?. 
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But since f3 0 0, we must have XA~ib = 0 for not all Ai = 0, which is impossible 

since {1i } is an independent set. Thus the Jacobian is nonsingular. A similar argu- 
ment holds for several unknowns cl(t), which can also be assumed constants. 

6. Examples. The success of Galerkin's method in a particular problem depends 
mainly on the choice of the coordinate functions 0i. In linear problems it is usual to 
choose an orthonormal basis, but it is not clear that such a choice is best in nonlinear 
cases where one desires orthogonality of the operator with the Pi's. We found that the 
method outlined in this paper worked quite well in sample problems and would now 
like to indicate some interesting points with some examples. 

The simplest problem of an unknown function c(t) is the one of growth in an 
unlimited environment y = c(t)y(t), y(O) = yo. We decided to try a case where the 
generated numbers were quite varied so as to get some idea as to the conditioning of the 
linear system which results. We chose to generate data from the test problem y = 

(1 - t + t2)y,y(0) = 1, whose solution isy(t) = et-t2/2+t3/3 and c(t) = 1 - t + t2 

for T= 1 or 5. The coordinate functions taken were the Legendre polynomials orthog- 
onal on [0, TI whose weight function is W(x) 1. 

The resulting linear system for n = 6 and T = 1 gave a solution good to six places 
when the integration was performed to 8. When T was increased to 5 the conditioning 
of the resulting system became poorer giving only three-place accuracy. The conditioning 
was imporved moderately by equilibrating the data to keep the calculated numbers rela- 
tively reasonable in magnitude; the solutions improved one decimal place in accuracy. 

Another test case involved two unknowns cl(t) and c2(t) in the problem of growth 
in a limited environment 

y(t) = c1(t)y(t) + C2(t)y2(t), Y(O) = 9, 

where the data was generated from y(t) = 90el t/(1 + 9el t) so that c1(t) 10, 
c2(t) - 1. Thus we assumed c1 and c2 to be functions even though the data came 
from constants. The results using Legendre polynomials with T = 3 and N = 3 gave 

c1(t) = 10.00002 - .00034t + .000686t2, 

c2(t) = -1.000002 + .000034t - .0000686t2. 

Notice the interesting fact that c1 = - 10c2 as is the case in the exact solutions. 
Another question is what happens when the data contain random errors. We 

tried the Volterra-Lotka equations with constant coefficients A = B = C = D = 1 as 
before but added a random number r, - .01 < r < .01, to x(t) and y(t) as they were 
calculated. The resulting linear systems are 

7.810149589A - 8.922227075B = - 1.10365313, 

20.363751096A - 23.02170886B = -2.63189518, 

-9.077398776C + 8.922227075D = -.16104135, 

-23. 939409757C + 23.02170886D = - .91548973, 

whose solutions are good to three places, with the data good only to two places. 
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The systems without any noise are 

7.81317483A - 8.91937981B = - 1.10620497, 

20.36959213A - 23.007586878B = -2.63799472, 

-9.07969595C + 8.91937981D = -.160316128, 

-23.92854735C + 23.007586878D = -.92096046, 

whose solutions are accurate to six places. In this example T = 5. 

5. A More General Class of Problems. In this paper, as well as in [1] and [3], 
it was assumed that the solution y of the differential equation was known. A new 
class of problems can be formulated where y is also unknown and where c = c(y) is 
sought so that if y and c solve y = f(t, y, c), then c and/or y will satisfy certain con- 
ditions. 

The simplest example of such a problem is: determine a vertical force f (y) in 
the x -y plane so that all projectiles starting from the origin with arbitrary nonzero 
initial velocities and nonvertical directions will, after 1 unit of time, be travelling 
horizontally. Mathematically, we seek a function c so that if y satisfies 

= c(y), y(0) = 0, P(0) = yo (arbitrary) 

then j(1) = 0 regardless of yo. Note that y(t) is unknown but we really desire only 
C. 

To solve such a problem one must assume some form for c(y), say c(y) = Xy. 
Under this assumption we can solve Y - Xy = 0 and consider the cases X > 0, X = 0 
and X < 0. In this problem the condition j(1) = 0 can only be met if X = _X2 where 
X = 7r/2 + nir. Thus, we have c(y) = _X2y and y(t) = yosin(Xnt)/Xn for any 
fixed n. 

A general class of first order problems of this type is as follows: Find c = c(y) 
so that the functional equation G(y1, Y2, c(y)) = 0 holds for all y1 in some domain 
[a, b] where y solves j =f (t, y, c(y)) subject to y(0) = Y1, y(1) = Y2. For ex- 
ample, G could be 

rY2C Y 
G(y1,y2, c(y)) fY2 c(y).dy 

An example of a second order problem of this type first occurred in [4] where 
f was the differential equation of geodesics on a surface S and the unknown c was a 
directrix curve which generated S. The problem there was to determine c so that all 
geodesics starting from a fixed point on S were parallel by the time they reached the 
edge of S. In that case G was a focussing condition and Galerkin's method was used 
to compute an approximation of c. 
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